On flow of electric current in RL circuit using Hilfer type composite fractional derivative
DOI:
https://doi.org/10.22199/issn.071762792019040040Keywords:
ResistanceInductance circuit, Fractional differential equation, MittagLeffler function, Laplace transforms, Hilfer derivativesAbstract
This paper deals with an interdisciplinary research work between Mathematical sciences and Electrical engineering to develop fractional model of ResistanceInductance circuit (RL circuit). Authors obtained the analytical solution of this fractional model in terms of MittagLeffler function. Graphical interpretation of solution also discussed in this paper.
References
A. Kilbas, H. Srivastava, and J. Trujillo, Eds., Theory and applications of fractional differential equations. Amsterdam: Elsevier, 2006. [On line]. Available: http://bit.ly/2lLbn3L
A. Carpinteri and F. Mainardi, Eds., Fractals and fractional calculus in continuum mechanics. Springer: Vienna, 1997, doi:10.1007/9783709126646.
A. Obeidat, M. Gharaibeh, M. AlAli, and A. Rousan, “Evolution of a current in a resistor”, Fractional calculus and applied analysis, vol. 14, no. 2, pp. 247–259, Jan. 2011, doi: 10.2478/s1354001100157.
A. Rousan, N. Ayoub, A. Alzoubi, H. Khateeb, M. AlQadi, M. Hasan and B. Albiss, “A fractional LCRC circuit”, Fractional calculus and applied analysis, vol. 9, no. 1, pp. 3341, 2006. [On line]. Available: http://bit.ly/2mugndn
A. Shukla and J. Prajapati, “On a generalization of MittagLeffler function and its properties”, Journal of mathematical analysis and applications, vol. 336, no. 3, pp. 797811, Dec. 2007, doi: 10.1016/j.jmaa.2007.03.018.
I. Jeses and J. Machado, “Fractional control of heat diffusion systems”, Nonlinear dynamics, vol. 54, no. 3, pp. 263—282, Dec. 2008, doi: 10.1007/s1107100793222.
A. Wiman, “Über den fundamentalsatz in der teorie der funktionen Ea(x)“, Acta Mathematica, vol. 29,no. 1, pp. 191201, 1905, doi: 10.1007/BF02403202.
E. Kreyszig, Advanced engineering mathematics, 8th ed. New York (NY): John Wiley & Sons, Inc, 2007.
G. Tsirimokou and C. Psychalinos, "Ultralow voltage fractionalorder circuits using current mirrors", International journal of circuit theory and applications, vol. 44, no. 1, pp. 109126, Feb. 2015, doi: 10.1002/cta.2066.
I. Podulbuny, Fractional differential equations, New York (NY): Academic Press, 1999.
J. Prajapati and K. Kachhia, “Fractional modeling of temperature distribution and heat flux in the semi infinite solid”, Journal of fractional calculus and applications, vol. 5, no. 2, pp. 3843, Jul. 2014. [On line]. Available: http://bit.ly/2miHCb2
J. Prajapati, K. Kachhia, and S. Kosta, “Fractional calculus approach to study temperature distribution within a spinning satellite”, Alexandria engineering journal, vol. 55, no. 3, pp. 2345–2350, Sep. 2016, doi: 10.1016/j.aej.2016.05.004.
J. Dubbeldam, Z. Tomovski and T. Sandev, “SpaceTime Fractional Schrödinger equation with composite time fractional derivative”, Fractional calculus and applied analysis, vol. 18, no. 5, pp. 11791200, Oct. 2015, doi: 10.1515/fca20150068.
J. GómezAguilar, R. EscobarJiménez, V. OlivaresPeregrino, M. TanecoHernández, and G. GuerreroRamírez, “Electrical circuits RC and RL involving fractional operators with biorder”, Advances in mechanical engineering, vol. 9, no. 6, pp. 1–10, Jun. 2017, doi: 10.1177/1687814017707132.
K. Kachhia and J. Prajapati, “Solution of fractional partial differential equation aries in study of heat transfer through diathermanous materials”, Journal of interdisciplinary mathematics, vol. 18, no. 12, pp. 125–132, Mar. 2015, doi: 10.1080/09720502.2014.996017.
K. Kachhia and J. Prajapati, “On generalized fractional kinetic equations involving generalized LommelWright functions”, Alexandria engineering journal, vol. 55, no. 3, pp. 2953–2957, Sep. 2016, doi: 10.1016/j.aej.2016.04.038.
M. Caputo, Elasticità e dissipazione, Bologna: Zanichelli, 1969.
M. Guía, F. Gómez, and J. Rosales, “Analysis on the time and frequency domain for the RC electric circuit of fractional order”, Open physics, vol. 11, no. 10, Oct. 2013, doi: 10.2478/s115340130236y.
P. Shah, A. Patel, I. Salehbhai, and A. Shukla, “Analytic solution for the RL electric circuit model in fractional order”, Abstract and applied analysis, vol. 2014, ID 343814, Jun. 2014, doi: 10.1155/2014/343814.
R. Hilfer, Applications of fractional calculus in physics, Singapore: World scientific, 2000.
R. Hilfer, “Experimental evidence for fractional time evolution in glass forming materials”, Chemical physics, vol. 284, no. 12, pp. 399–408, Nov. 2002, doi: 10.1016/S03010104(02)006705.
R. Saxena, A. Mathai, and H. Haubold, “Spacetime fractional reactiondiffusion equations associated with a generalized Riemann–Liouville fractional derivative”, Axioms, vol. 3, no. 3, pp. 320–334, Aug. 2014, doi: 10.3390/axioms3030320.
R. Saxena, Z. Tomovski and T. Sandev, “Fractional Helmholtz and fractional wave equations with RieszFeller and generalized RiemannLiouville fractional derivatives”, European journal of pure and applied mathematics, vol. 7, no. 3, pp. 312334, Aug. 2014. [On line]. Available: http://bit.ly/2nZzigI
S. Purohit, “Solution of fractional partial differential equations of quantum mechanics”, Advances in Applied Mathematics and Mechanics, vol. 5, no. 5, pp. 639651, Oct. 2011, doi: 10.1017/S2070073300002356.
T. Kaczorek and K. Rogowski, “Positive fractional electrical circuits”, in Fractional Linear Systems and Electrical Circuits, vol. 13, Cham: Springer, 2015, pp. 49–80, doi: 10.1007/9783319113616_2.
T. Sandev, R. Metzler, and Ž. Tomovski, “Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative”, Journal of physics A: mathematical and theoretical, vol. 44, no. 25, p. 255203, May 2011, doi: 10.1088/17518113/44/25/255203.
T. Sandev, Z. Tomovski, and B. Crnkovic, “Generalized distributed order diffusion equations with composite time fractional derivative”, Computers & mathematics with applications, vol. 73, no. 6, pp. 1028–1040, Mar. 2017, doi: 10.1016/j.camwa.2016.07.009.
V. Toro, Electrical engineering fundamentals, 2nd ed. Delhi: PrenticeHall, 2002.
Ž. Tomovski, T. Sandev, R. Metzler, and J. Dubbeldam, “Generalized space–time fractional diffusion equation with composite fractional time derivative”, Physica A: Statistical Mechanics and its Applications, vol. 391, no. 8, pp. 2527–2542, Apr. 2012, doi: 10.1016/j.physa.2011.12.035.
Published
How to Cite
Issue
Section

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.